How molding these elements into one can add efficiencies to work processes.
In my ongoing quest to provide Pharma Commerce readers with a plethora of content, I recently had the opportunity to chat with Updesh Dosanjh, practice leader for the pharmacovigilance (PV) technology solutions business unit at IQVIA, to discuss the all-encompassing topic of PV as it pertains to its relationship with manual reporting and using technology—including artificial intelligence (AI), machine learning (ML), and natural language processing (NLP)—to simplify this process.
Gathering this information came via two mediums: A PC Podcast recording and a contributed piece from Dosanjh himself. When it comes to our podcast conversation, listeners can expect to gain insight on the following topics and questions:
Dosanjh elaborates on several of the above topics in his article, especially when it comes to the efficiencies of technology, in saying that “NLP helps computers identify adverse events more precisely and efficiently than human analysts, which is why many might argue that it is particularly useful in pharmacovigilance. To identify adverse occurrences more rapidly and accurately, this system can evaluate hundreds of case files and spot trends that human analysis would miss. … Together with NLP, other technologies like ML, data analytics, and AI are also enhancing pharmacovigilance effectiveness.”
There is no doubt that tech is impacting the PV landscape in a manner in which patient safety is enhanced. That said, if readers are intrigued by what can be expected in the future (without giving too much away of course), they should be on the lookout for the evolution of digital health tech, along with an increase emphasis on personalized medicine.
Understanding the FDA's Exemption for DSCSA Compliance
November 12th 2024In the quest for achieving full traceability, the exemption applies to certain trading partners under the Act, and postpones enforcement of final compliance requirements while acknowledging progress and ongoing challenges.